Prototyping with a Purpose
As leaders in the Pentagon, Capitol Hill, and industry come to grips with great power competition with China and Russia, we all agree: We must accelerate innovative research and development, acquire new capabilities faster, and transform the way the U.S. military fights if it is to prevail. This is hardly the first time U.S. national security leaders have felt a sense of urgency and attempted to do so.
Unfortunately, results have been mixed at best, with absurd acquisition debacles that have set back the country tens of billions of dollars and delayed necessary weapon systems for years. While examples abound in each military service, we are particularly concerned with Navy shipbuilding. We believe there is a better way to develop new first-of-class ships.
As the Government Accountability Office (GAO) has documented, lead ships in new classes of naval vessels routinely fail to meet expectations. For the eight most recently delivered lead combatant ships—the USS Gerald R. Ford (CVN-78), Zumwalt (DDG-1000), Freedom (LCS-1), Independence (LCS-2), America (LHA-6), San Antonio (LPD-17), Virginia (SSN-774), and Texas (SSN-775)—the GAO found that a total of $8 billion more than the initial cost estimate was required to construct these ships, each lead ship experienced cost growth of at least 10 percent, and three lead ships exceeded their initial budgets by 80 percent or more. Further, each lead ship was delivered to the fleet at least six months late—five were more than two years late—and most lead ships had dozens of uncorrected deficiencies when the Navy accepted them.
GAO experts have continually noted a key step in successful shipbuilding programs is technology development—the maturation of key technologies into subsystem prototypes and demonstration of those subsystem prototypes in a realistic environment prior to the detailed design of the lead ship. This type of technology maturation was not performed effectively, or at all, on the CVN-78, DDG-1000, LCS-1, LCS-2, and LPD-17 programs.
It was not always this way. During the 1960s and 1970s, the Navy took a methodical, knowledge-based, subsystem-focused approach to developing the Aegis Combat System and SPY-1 radar. Rear Admiral Wayne E. Meyer, known as the “Father of Aegis,” led these programs by focusing on maturing subsystems based on his philosophy of “Build a Little, Test a Little, Learn a Lot.” The Aegis Combat System and SPY radar have been incrementally upgraded ever since and continue to serve as the backbone of the Navy and multiple allied surface combatant fleets.
Achieving the aims of the National Defense Strategy is a long game, so we must take the long view, just like China and Russia. With a number of new ship classes on the horizon, now is the time to return to the methodical, knowledge-based, subsystem-focused approach that worked in the past for fielding first-of-class ships. Defense leaders have called for developing and procuring the first Large Surface Combatant, Large Unmanned Surface Vehicle, Future Small Auxiliary, Future Large Auxiliary, and Light Amphibious Warship in the coming years. In addition, large and extra-large unmanned undersea vehicles will transition from research and development to procurement in the next decade.
We believe this is a critical juncture and opportunity for all of us to do better on lead ships. To this end, we call for—and are encouraging with this year’s National Defense Authorization Act—the return to an Aegis-type development model in which critical subsystems are matured before the Navy procures the lead ship of a new class. This development should be based on a detailed understanding of the systems engineering necessary to mature the subsystems and the technical integration needed to achieve overall platform performance. Without such an approach, we are convinced the cost overruns, schedule delays, and substandard performance that have defined Navy lead-ship development over the past two decades will continue. It does not have to be this way.
As an alternative approach, we believe these four principles should guide lead-ship development:
1. Department of Defense (DoD) and Navy leaders should lead on defining the future force architecture and, just as important, personally sign off on realistic system- and subsystem-level plans. Concept development and wargaming too often ignore the technical difficulty of new capabilities and platforms, including ships. Future force planning must detail requirements and notional acquisition strategies constrained by conditions-based technical development roadmaps for developing new critical subsystems and for modifying existing critical subsystems. If a subsystem is essential to the mission or mechanical or electrical performance of a platform, then we consider it critical.
2. New critical subsystems should be proven before building a full-scale platform. If a critical subsystem has not been demonstrated in the envisioned form, fit, and function, it needs to be prototyped (on land or at sea) as a subsystem and proven to meet at least minimum requirements. Then, it needs to be prototyped with other critical subsystems with which it will interface in vessel-representative form to ensure sufficient technical and technological maturity of the system of systems. This type of process has worked in the past and is working today. Some recent examples of successful government- and contractor-led critical subsystem prototypes that continue to provide significant benefits to both the government and industry include: the land-based engineering site for key electrical and propulsion subsystems (including control software) for surface combatants at Naval Surface Warfare Center Philadelphia, the land-based engineering site for the Aegis Weapons System at a contractor facility, and the full-scale prototype testing of the SPY-6 Air and Missile Defense Radar at a contractor facility (prior to the 2016 decision to integrate the radar on DDG-125).
3. Contracting for a full-scale platform prototype should occur only after all critical subsystems have been proven and should focus on system integration. Having prototyped critical subsystems and demonstrated they are fully developed and technically sound, the Navy can focus full-scale platform prototypes on subsystem integration, rather than technology development. As platform integration issues arise, having subsystem prototyping already completed should enable faster root-cause analyses and corrective actions. If a critical subsystem cannot meet minimum requirements, the Navy should not proceed to prototyping a full-scale platform. Keep the focus on proving all critical subsystems first. For example, until the vessel-representative engine and generator (including ancillary equipment) have run continuously for 30 days on a test stand, the Navy should not contract for a large unmanned surface vehicle full-scale prototype, the minimum requirement for which is operating unattended for 30 days. Without an engine that meets the minimum specifications, the ship cannot meet the minimum requirements.
4. The objective of subsystem and full-scale platform prototyping is to close the government’s technical knowledge gaps. Some observers believe government involvement in technology development slows down innovation. Rather than slowing down innovation, the government technical community is key to speeding up the government’s adoption of innovative capabilities and, just as critically, sustaining these systems once fielded.
In areas where government expertise strains to keep up with industry advances, leaders must ensure government technical experts receive adequate resources to keep pace. The standard must be for DoD to maintain a cadre of technical experts as knowledgeable as any outside expert in the application of a given technology to a DoD weapon system, particularly critical subsystems. The technical support community for Navy submarines exemplifies this standard of expertise.
We recognize Congress has an important role to play—indeed, a Constitutional duty—in maintaining our Navy. To this end, the National Defense Authorization Act (NDAA) for Fiscal Year 2020 contained provisions that would support this alternative approach, including:
In the Senate Armed Services Committee NDAA for Fiscal Year 2021, our committee furthered this approach by including:
We believe the case is clear and compelling that successful prototyping of individual critical subsystems is essential to achieving a solid technical foundation for new platforms, particularly in shipbuilding. Rather than delaying new programs, we believe this approach will enable the delivery of capable, reliable, and sustainable platforms that meet the needs of military commanders faster than would otherwise occur.
Leaders in the Pentagon, Capitol Hill, and industry must recognize that speeding up innovative research and development, acquiring new capabilities faster, and transforming the way the U.S. military fights will actually require the disciplined demonstration of critical subsystems first. We look forward to working together toward this end. The stakes are real, and we have no time to waste.
Senator Jim Inhofe (R-Oklahoma) is Chairman of the Senate Armed Services Committee. Senator Jack Reed (D-Rhode Island) is the Ranking Member of the Senate Armed Services Committee.